World Library  
Flag as Inappropriate
Email this Article

5-4-3 Rule

Article Id: WHEBN0028685803
Reproduction Date:

Title: 5-4-3 Rule  
Author: World Heritage Encyclopedia
Language: English
Subject: Ethernet, Computer network
Publisher: World Heritage Encyclopedia

5-4-3 Rule

The 5-4-3 rule also referred to as the IEEE way (contrary to the Ethernet way) is a design guideline for Ethernet computer networks covering the number of repeaters and segments on shared-access Ethernet backbones in a tree topology.[1] It means that in a collision domain there should be at most 5 segments tied together with 4 repeaters, with 3 segments containing active senders (i.e. terminals).


Collision detection

According to the original Ethernet protocol, a signal sent out over the collision domain must reach every part of the network within a specified length of time. The 5-4-3 rule ensures this. Each segment and repeater that a signal goes through adds a small amount of time to the process, so the rule is designed to minimize transmission times of the signals.

For the purposes of this rule, a segment is in accordance with the IEEE definition: an electrical connection between networked devices.[2]

In the original 10BASE5 and 10BASE2 Ethernet varieties, a segment would therefore correspond to a single coax cable and any devices tapped into it. On modern twisted-pair Ethernet, a network segment corresponds to the individual connection between end station to network equipment or the connections between different pieces of network equipment.

This rule divides a collision domain into two types of physical segments: populated (user) segments, and unpopulated (link) segments. User segments have users' systems connected to them. Link segments are used to connect the network's repeaters together. The rule mandates that there can only be a maximum of five segments, connected through four repeaters, or concentrators, and only three of the five segments may contain user connections. This last requirement applies only to 10BASE5 and 10BASE2 Ethernet segments.[3]

Preamble consumption

In addition to the necessity of reliable collision detection, a frame cannot be repeated too many times. A repeater normally listens for the 0101 preamble and then locks onto the bit stream. Once locked on, it would then repeat each bit out the other port(s). However, a number of bits would be consumed at the start while the repeater was locking onto the bit stream.[4] As the frame propagated through each repeater the preamble would get shorter and shorter. Too many bits lost meant that an end node may not have enough preamble bits to lock on and the entire frame would be missed.

Various repeaters (hubs) may use slightly different implementations and operate differently. Each repeater would lose more or less bits while locking on, some could lose as many as 5 or 6 bits. You could create a network with more repeaters if you made sure the total number of lost preamble bits wouldn't exceed the requirements of the receiving hardware and collisions would not pose a problem. Usually this detailed information is not easy to obtain and difficult for users to calculate. The standard requires generation of sufficient preamble bits to make sure a frame can be received when operated within specification limits (i.e. applying the 5-4-3 rule).

In a lab at DEC they knew how many bits their repeaters would lose and knowing this were able to create an 11 segment, 10 repeater, 3 active segment (11-10-3) network that maintained a round trip delay of less than 51.2 µs and a sufficient number of preamble bits that all end nodes functioned properly.

This rule is also designated the 5-4-3-2-1 rule with there being two network segments and one collision domain.[5]

The 5-4-3 rule was created when 10BASE5 and 10BASE2 were the only types of Ethernet network available. The rule only applies to shared-access 10 Mbit/s Ethernet backbones. The rule does not apply to switched Ethernet because each port on a switch constitutes a separate collision domain.

Ethernet way

An alternate configuration rule known as the Ethernet way allows 2 repeaters on the single network and does not allow any hosts on the connection between repeaters.

See also


  1. ^ Helmig, Johannes (28 October 1997). "Large Networks: 5-4-3 Rule". Archived from the original on 3 September 2010. 
  2. ^ "1.4.318", 802.3-2008 Part 3: Carrier sense multiple access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, IEEE, 26 December 2008, segment: The medium connection, including connectors, between Medium Dependent Interfaces (MDIs) in a CSMA/CD local area network. 
  3. ^ An Educator's Guide to School Networks, Florida Center for Instructional Technology, retrieved 4 September 2010 
  4. ^ IEEE 802.3-2003 section "Preamble"
  5. ^ Mitchell, Bradley. "The 5-4-3-2-1 Rule". Archived from the original on 3 September 2010. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.