World Library  
Flag as Inappropriate
Email this Article

Multipath interference

Article Id: WHEBN0001860453
Reproduction Date:

Title: Multipath interference  
Author: World Heritage Encyclopedia
Language: English
Subject: Distributed transmission system, Cellular repeater, Orthogonal frequency-division multiplexing, Reference desk/Archives/Miscellaneous/2009 July 2, Digital Audio Broadcasting
Collection: Interference
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Multipath interference

Coherent waves that travel along two different paths will arrive with phase shift, hence interfering with each other.

Multipath interference is a phenomenon in the physics of waves whereby a wave from a source travels to a detector via two or more paths and, under the right condition, the two (or more) components of the wave interfere. Multipath interference is a common cause of "ghosting" in analog television broadcasts.

Conditions

A diagram of the ideal situation for TV signals moving through space: The signal leaves the transmitter (TX) and travels through one path to the receiver (the TV set, which is labeled RX)
In this illustration, an object (in this case an aircraft) pollutes the system by adding a second path. The signal arrives at RX by means of two different paths which have different lengths. The main path is the direct path, while the second is due to a reflection from the plane.

The condition necessary is that the components of the wave remain coherent throughout the whole extent of their travel.

The interference will arise owing to the two (or more) components of the wave having, in general, travelled a different length (as measured by optical path length – geometric length and refraction (differing optical speed)), and thus arriving at the detector out of phase with each other.

The signal due to indirect paths interferes with the required signal in amplitude as well as phase which is called multipath fading.

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.